A Modified Algorithm for Generalized Discriminant Analysis
نویسندگان
چکیده
منابع مشابه
A Modified Algorithm for Generalized Discriminant Analysis
Generalized discriminant analysis (GDA) is an extension of the classical linear discriminant analysis (LDA) from linear domain to a nonlinear domain via the kernel trick. However, in the previous algorithm of GDA, the solutions may suffer from the degenerate eigenvalue problem (i.e., several eigenvectors with the same eigenvalue), which makes them not optimal in terms of the discriminant abilit...
متن کاملModified linear discriminant analysis
In this paper, a modified Fisher linear discriminant analysis (FLDA) is proposed and aims to not only overcome the rank limitation of FLDA, that is, at most only finding a discriminant vector for 2-class problem based on Fisher discriminant criterion, but also relax singularity of the within-class scatter matrix and finally improves classification performance of FLDA. Experiments on nine public...
متن کاملGeneralized Discriminant Analysis Using a Kernel Approach
We present a new method that we call generalized discriminant analysis (GDA) to deal with nonlinear discriminant analysis using kernel function operator. The underlying theory is close to the support vector machines (SVM) insofar as the GDA method provides a mapping of the input vectors into high-dimensional feature space. In the transformed space, linear properties make it easy to extend and g...
متن کاملGeneralized 2D Fisher Discriminant Analysis
To solve the Small Sample Size (SSS) problem, the recent linear discriminant analysis using the 2D matrix-based data representation model has demonstrated its superiority over that using the conventional vector-based data representation model in face recognition [7]. But the explicit reason why the matrix-based model is better than vectorized model has not been given until now. In this paper, a...
متن کاملGeneralized Discriminant Analysis algorithm for feature reduction in Cyber Attack Detection System
This Generalized Discriminant Analysis (GDA) has provided an extremely powerful approach to extracting non-linear features. The network traffic data provided for the design of intrusion detection system always are large with ineffective information, thus we need to remove the worthless information from the original high dimensional database. To improve the generalization ability, we usually gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Computation
سال: 2004
ISSN: 0899-7667,1530-888X
DOI: 10.1162/089976604773717612